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An algorithm is proposed for calculating the velocity, temperature, and concentra- 
tion fields under conditions of cooling of a cylindrical heat-releasing rod, placed 
off-center in a circular casing pipe, by a longitudinal flow of chemically reacting 
gas [N204]. 

Annular channels are a widely used structural element in heat exchange equipment and 
active zones of nuclear reactors. Examples are heat exchangers of the double-pipe type. 
With the use of annular channels in active zones of nuclear reactors the inner pipe is re- 
placed by a heat-releasing rod with a sheath and a gas gap between them. in practice, be- 
cause of the structural peculiarities of the channels and inaccuracies of the assembly the 
longitudinal axes of the heat-releasing rod and of the casing pipe may not be aligned, i.e., 
an eccentricity appears. In this case in calculating the temperature field not only the 
nonuniform conditions of cooling at the surface of the rod but also the flow of heat in the 
rod itself must be taken into account. 

An algorithm for calculating heat and mass transfer processes under conditions of flow 
of a chemically reacting gas N204 in concentric annular channels is proposed in [i, 2]. 
However, because of the possibility of using dissociating gases as coolants and working 
bodies of nuclear power plants [3], it is necessary to develop computational algorithms for 
calculating heat and mass transfer processes under conditions of nonequilibrium flow of 
chemically reacting gases not only in axisymmetric channels, but also in channels with a 
complex transverse cross section (including also in eccentric annular channels). 

The transverse cross section of the channel is shown in Fig. i. The heat-releasing rod 
with two sheaths is cooled by a longitudinal turbulent flow of coolant, in which the chemical 
reaction N204 ~ 2NO 2 ~ 2NO + 02 occurs. The first stage of the reaction is chemically 
balanced, while for the second stage it is necessary to take into account the finite rate 
of the stage. In accordance with the conventional assumptions made for problems of this class, 
we neglect the flow of heat and mass along the axis of the channel owing to heat conduction 
and diffusion, thermo- and barodiffusion effects, and secondary flows, and we take into 
account only the longitudinal component of the velocity. In this case the heat and mass 
transfer processes, taking into account the anisotropy of the coefficients of turbulent 
diffusion, are described by the following system of equations: 
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Fig. i. Transverse section of the annular 
channel with an eccentricity. 
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where YI and Y2 are the boundary between the rod and first sheath and the boundary between 
the sheaths, respectively; 7pa, surface of the annular channel; yp, outer surface of the 
casing pipe; the values of the index i = 1 and 2 refer to the first and second sheaths of 
the heat-releasing rod, and i = 3 refers to the casing pipe. 

The coefficients of turbulent diffusion were calculated using the procedure proposed 
in [4]: 
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Here L x and Ly are the "directed" scales, calculated for rectilinear channels using the 
formulas 
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where L is the "isotropic" scale, which for rectilinear channels can be determined from the 
formula 

1 1 2= -c=v! +.% 
where s is the distance from the point under study to the channel wall in the direction 

We shall replace the derivatives along the channel in Eqs. (i), (3), and (4) by finite- 
difference analogs. In addition, the equation of motion was integrated with the use of a 
purely implicit scheme (Euler's scheme), while the energy and diffusion equations were inte- 
grated using the Crank-Nicholson scheme. After the difference approximation of the deriva- 
tives of the quantity sought along the axis of the channel, the solution of Eqs. (i), (3), 
and (4) can be sought as a minimum of the functionals [5]: 
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The pressure gradient dP/dz is found from the condition that the flow rate along the channel 
is constant. Using the general solutions for the equations of heat conduction for a rod, 
the sheaths, and the casing pipe in the form of Fourier series with unkown coefficients, 
following [5] we write the functional for the temperature as follows: 
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To determine the minima of the functionals (14), (16), and (17) we shall employ the method 
of finite elements [6]. After the corresponding transformations the problem reduces to the 
solution of systems of algebraic equations for the parameters at the nodal points Up, Tp, 
C4p: 
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The matrix 3 (2) is a component of the stiffness matrix, taking into account the heat conduc- 
tion processes in the fuel core, the sheaths, and the casing pipe. Thus the determination 
of the velocity, temperature, and concentration fields reduces to solving the algebraic 
equations (18)-(19) at each step along the channel. 
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Fig. 2. Comparison of experimental [7] and computed wall tem- 
peratures of a concentric annular channel for different cross 
sections at the channel inlet: i) z = 0.065 m; 2) 0.13; 3) 0.26; 
4) 0.39; 5) 0.45. 

Fig. 3. Change in the ratio of the maximum velocity Umaxl at 
r = 0~ to the maximum velocity Umax2 at r = 180~ along the 
channel for different eccentricities. 
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10 -3 m, Rs~ = 3.7"10 -3 m); I) "frozen" 
flow and 2) chemically reacting flow. 

As established as a result of a numerical experiment, in integrating the energy equa- 
tion there arise oscillations of the temperature, whose magnitude decreases as the sizes of 
the elements and the size of the integration step Az along the channel axis decrease. 
Therefore at each step along the channel axis the energy equation was solved twice: first, 
using the Crank-Nicholson scheme, the temperature was determined at the point i + 1/2 as 
(T i + Ti+1)/2, and then with the help of the same scheme the temperature at the i + 1-st 
step was found as (Ti+i/2 + Ti+3/2)/2. In this approach the temperature oscillations arising 
in the course of the numerical solution could be completely avoided. 

To substantiate the reliability of the computational results obtained using the proposed 
algorithm we calculated a number of operating regimes [7], in which heat transfer under condi- 
tions of turbulent flow of the dissociating coolant nitrine in concentric annular channels 
was studied. Figure 2 shows the distribution of the computed Tw c and experimental Tw e wall 
temperatures for different cross sections at the inlet to the channel. The deviation of the 
computed temperatures from the experimental temperatures falls in the range •176 

Figure 3 shows the ratio of the maximum velocities in the wide (Umaxl) and narrow 
(Umax2) parts of the channel at different distances from the inlet section. One can see that 
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increasing the relative eccentricity increases the section in which the value of Umaxl/Umax2 
is stabilized. 

Figure 4 shows the temperature distribution along the surface of the heat-releasing rod 
(z = 0.35 m) for a chemically reacting flow for different values of the relative eccentricity 
and coefficients of thermal conductivity of the fuel, sheaths, and casing pipe. The curves 
3 correspond to the case IF = 16 W/(m.deg), ksl = 0.4 W/(m.deg), %s2 = 20 W/(m'deg), is3 = 
20 W/(m-deg), while curve 4 corresponds to the case %F = 64 W/(m'deg), %sl = 1.6 W/(m-deg), 
is2 = 80 W/(m'deg), ks3 = 80 W/(m-deg). The figure also compares the results of calculations 
of the corresponding variants of the "frozen" flow. One can see from the figure that chemical 
rections in the flow reduce the nonuniformity of the temperature along the perimeter of the 
sheath of the rod compared with the case of the "frozen" flow. This is caused byheat transfer 
owing to concentration-driven diffusion. In analyzing the dependence of the nonuniformity of 
the surface temperature of the rod on the coefficients of thermal conductivity and the geo- 
metric dimensions of the fuel core and of the sheaths it could be useful to employ the 
generalized thermal similarity parameter Yk [8]. This parameter for a rod with two sheaths 
has the form 

~ x~ (y~ - -  x~) y~ + x~ (I - -  x ~ )  
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where ~i = (Xs, -- ~F)/(~I -~- %2; Y2 = (~ -- Lsl)/(~2 @ ~m); xl = (RF/Ps,) 2k ; x~ = (Rm/Rs~) ~. 

If 7k § ~, then boundary conditions of the first kind (T w = const) are realized on the~ 
surface of the rod. Ohe can see from Fig. 4 that when the coefficients of thermal conduc- 
tivity of the fuel and sheath materials are quadrupled (which corresponds to quadrupling 
u also) the temperature nonuniformity on the surface of the sheath decreases by a factor of 
~3. 

NOTATION 

u, velocity; B, coefficient of dynamic viscosity; p, density; Cp, heat capacity; D, 
coefficient of diffusion; mk, molecular mass of the k-th component; r coefficient of turbu- 
lent viscosity; G, flow rate; s, area; qv, volume liberation of heat; ~, coefficient of 
thermal conductivity; Kc, reaction rate constant; Qp, heat released in the reaction; e, rela- 
tive eccentricity; and z, longitudinal coordinate. Indices: I and ll,Freactions N~O 4 
2NO 2 and 2NO a ~ 2NO + 02, respectively; i) N204; 2) NO2; 3) NO; 4) 02; f, fuel; s, sheath; 
"in", inlet section; e, equilibrium value; and t, turbulent value. 
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